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Abstract A direct procedure for the transient analysis of dynami¢sioucture interaction problems is
developed based on some recent advances in the scaled bpfinda-element method. Applying the
continued-fraction solution of the scaled boundary firikement equation in dynamic stiffness, the equa-
tions of motion of both bounded and unbounded domains armauiated as that in classical structural
dynamics, i.e., a system of ordinary differential equatiwith time-independent coefficient matrices. No
convolution integral is present. This formulation perntiits application of standard time-stepping schemes
to perform a transient analysis. The technique of reducedfd®ase functions is employed to further in-
crease the computational efficiency. A numerical exampteatestrates the simplicity in mesh generation,
accuracy and efficiency of the novel solution procedure.
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INTRODUCTION

A structure interacts with the supporting soil under dymaagtions, such as earthquakes and impacts.
The structure is of finite dimension and usually modeled y/fihite element method. The inertial effect
of a finite element is modeled by a mass matrix, which reptesée low frequency behavior. To model
the high frequency response, the mesh has to be refined detalim larger number of degrees of free-
dom. In comparison with the size of the structure, soil isiasd to cover an unbounded domain. The
dynamic analysis of an unbounded domain is a difficult taskeeially when it is performed directly in
the time domain. Many numerical methods have been develimpedis purpose. The boundary element
method [1] satisfies the governing equations in the problemain and the radiation condition at infinity
automatically by using a fundamental solution. Only thermary needs to be discretized. However, the
fundamental solution is very complicated to evaluate whenrhaterial is anisotropic. In a direct time
domain analysis, a convolution integral has to be compufadous approximate transmitting boundaries
have been proposed [2], but they have to be applied at a lastpnde from the structure and may suffer
from instability problem. Recently, high-order transimigt boundaries, i.e. [3], have been proposed for
scalar waves, but their extension to vector waves is a aigilg task.

The scaled boundary finite-element method provides amaliige in the analysis of dynamic soil-structure
interaction problems. Only the boundary is discretizechate boundary element method, but no funda-
mental solution is required. General anisotropic mateah be analyzed without additional efforts. This
method has been applied successfully in frequency and tonenhs, e.g, [4,5]. Recently, a continued-
fraction solution of the scaled boundary finite-elementagigun in dynamic stiffness has been obtained for
both bounded and unbounded domains [6, 7]. The equation tidmis expressed in static stiffness, damp-
ing and mass matrices as in classical structural dynamissa #esult, standard numerical procedures in
structural dynamics are applicable to perform dynamicswilcture interaction problems. In this paper, a
direct procedure for the transient analysis based on tivislisolution procedure is presented by combining
the solution procedures for bounded and unbounded domains.



Figure 1. Scaled boundary coordinates: (a) scaling c&teadial Figure 2. Representation of
coordinate and boundary discretization; (b) geometry of unbounded domain in scaled
transformed domain boundary coordinates

SUMMARY OF THE SCALED BOUNDARY FINITE-ELEMENT METHOD

The derivation of the scaled boundary finite-element equaind the continued-fraction solution are de-
tailed in Refs. [8,9] and [7], respectively. Only the key cept and equations are summarized.

In the scaled boundary finite-element method [8, 9], a stedaicaling cente® is chosen in a zone from
which the total boundar$is visible. A bounded domai is shown in Figure 1(a) as an example. Without
losing generality, the origin of the Cartesian coordingtgamx] y is selected at the scaling center. The
boundaryS is discretized into elements. The coordinates of the nodles element in the Cartesian
coordinate system are arranged{i}, {y}. The geometry of an element is interpolated using the shape
functions[N(n)] formulated in the local coordinatg. The geometry of the domaw is described by
scaling the boundary with the dimensionless radial coatéif pointing from the scaling centéd to a
point on the boundary = 0 atO andé = 1 on the boundary are chosen (Figure 1(a)). A poinfXinside

the domain is thus expressed as

X(&,n) =¢&x(n)=&[N(n){x};  ¥(&,n)=2&y(n)=&[Nn)l{y} (1)

The coordinateg, n are called thescaled boundary coordinate3 hey resemble the polar coordinates ~
and 8. When the origin of a polar coordinate system coincides withscaling center as in Figure 1(b),
the polar coordinates are expressed using Eq. (1) as

F(&,n)=2¢&r(n); 6(n) = arctarty(n)/x(n)) 2)

wherer (n) = /X2(n) +Y2(n) is the radial coordinate on the boundary. As the whole boyndavisible
from the scaling centefl(n) is a single-valued function in its principal value ff < 8 < ). The element
number and the local coordinatecan be regarded as a discrete representation of the @ingle the
scaled boundary coordinates, The boundaof the problem domail is described by a constant radial
coordinate = 1 as shown in Figure 1(b). A bounded dom¥its thus specified by & ¢ < 1.

Unbounded domains can be conveniently defined by constargssaf the scaled boundary coordinates.
An example is shown in Figure 2. The scaling cerdes chosen at the intersection between the straight
free surfaces. Only the part of boundary directly visibirthe scaling center is discretized. The straight
surfaces passing through the scaling center are definedisyasu values ofy and are not discretized. The
unbounded domain is thus specified by £ < co.

Along radial lines passing through the scaling cef@t@nd a node on the boundary, the nodal displacement
functions{u(&)} are introduced (For simplicity, the dependency on tiroethe excitation frequenay is
omitted from the argument when it is not explicitly required@he nodal displacements on the boundary
follow as{u} = {u(§ =1)}. Isoparametric displacement elements are used in thentferantial direction

to interpolate the displacement functions piecewisely

{u(§.m} = IN“(m){u(&)} = [Ne(m)[1], Na(m)[1],.. J{u(&)} 3)



where[l] is a 2x 2 identity matrix.

The scaled boundary finite-element equation is derived plyapm the Galerkin’s weighted residual tech-
nique or the virtual work method in the circumferential diien n to the governing differential equations.
In the frequency domain, theealed boundary finite-element equation in displacensexpressed as

[E%E*{u(&)} e +([E”) — [EY+[ET)E{u(E)} e —[EZHu(E)} + (w0&)*M{u(§)} =0 (4)

wherew is the excitation frequencyEY], [E1], [E?] and[M?] are coefficient matrices obtained by assem-
bling the element coefficient matrices as in the finite elenmeethod. The element coefficient matrices
are available in Ref. [10]. The coefficient matrid&S] and[M?] are positive-definite]E?] is symmetric.
As for the mass matrices in finite elemer&?] and[M?) can be lumped to the nodes [11E°] will be

a block-diagonal matrix consisting blocks of the size 2 . [M?) will be a diagonal matrix. The tech-
niques of using Gauss-Lobatto-Legendre shape functiotsjaadrature to obtain lumpég®] and[M?]

are investigated in [11].

The internal nodal forces along the radial lines are obthimeintegrating the surface traction over ele-
ments. They are expressed as

{a(&)} =[E%&{u(&)} ¢+ [EY{u(&)} (5)

The internal nodal forces are related to the nodal forcesherbbundary of a domain. For a bounded
domain defined by a boundary with a consténthe outward normal is the same as the positive direction
of the radial coordinaté in the scaled boundary coordinates. Introducing the definibf the dynamic
stiffness matriXS(w, &)], the nodal forces are expressed as

{R(&)} ={a(&)} = [S(w, §){u(&)} (6)

Eliminating{q(¢)} and{u(&¢)} from Eqgs. (4), (5) and (6) leads to an equation for the dynastifiness
matrix [S(w, & )] [8]. Formulated on the boundary & 1), the scaled boundary finite-element equation for
the dynamic stiffness matrix of a bounded dom&@w)| = [S(w, & = 1)] is written as

([S(w)] ~ [ENEH([S(w)] ~ [E") ~ [E*] + S w)],0+w’[M?] =0 (")

A similar equation can be derived for an unbounded domaire Mt the outward normal of an unbounded
domain is pointing towards the scaling center. The dynastifiness matriXS”(w, & )] (superscripto for
unbounded) is defined by

{R(&)} = —{a(&)} = [S*(w, &) {u(&)} (8)

The scaled boundary finite-element equation in dynamifmsess is written on the boundar§ & 1) of an
unbounded domain as

(1S*(w)] + [ENE”H([S”(w)] + [E") — w[S*(w)]w — [E*] + w’[M%] =0 (©)

MODELING OF UNBOUNDED DOMAIN BASED ON CONTINUED-FRACTION SOLUTION
FOR DYNAMIC STIFFNESS MATRIX

An analytical solution in frequency domain is developedig][for the scaled boundary finite-element
equation in displacement (Eq. (4)). It is expressed as matrictions of the excitation frequency. To
satisfy the radiation condition at infinity, an asymptotidugion has to be applied. This solution can not
be used in combination with well-established methods incstiral dynamics to perform a direct time
domain analysis. To overcome this difficulty, a continueatfion solution of the scaled boundary finite-
element equation (Eq. (9)) for the dynamic stiffness maifian unbounded domain is developed in [6].



This new solution leads to the development of a high-orderamitting boundary. The key equations are
summarized in the following.

An orderMZ continued-fraction solution of the dynamic stiffness rixafs”(w)] is expressed as

[S°(w)] = 10[Ca] + [Keo] — (0¥ V] + [YgV] — (i[Y{ 2] + [Yg ] — ..

— (icopyMe"

Met)

Dt ™hh (10)

The first two terms are the dashpot maf@x| and the spring matrife). [Yl(i)] and[Yéi)] (i=1,2...M%)
are the coefficient matrices of the high-order terms. Thesdficient matrices of the continued-fraction
solution are determined by substituting Eq. (10) into EY. (9

A

The solution fof{Ce| satisfying the radiation condition is symmetric and positiefinite (assuming a time
dependence @)

[Coo] =[E°) (@] [A] [@]T [E”] (11a)
where[A| are the positive square roots of the eigenvalues of the gesigenvalue problem
MO][@] =[E°[@] [A?] (11b)
The eigenvector matrijP] is normalized as
()T [E°)[@] =[1] (11c)

When[E? and[MO] are lumped, Eq. (11b) is a series of independent eigenvahidems of size X 2.
[®@] and[C.] are also block-diagonal with the same structure. The spniatyix is equal to

[Keo] =[E°)[@] [keo] (@] [E”] (12a)
where k| is the solution of
[A][keo] + ko] [A] = = [A] [@]T[EYT [@] — [@] T [EY[®] [A] + [A] (12b)

The coefficient matrices of the high-order terﬁifléi)] and [Yo(i)] (i=1,2,...M}) are determined recur-
sively. Defining the constant matrices for the casel

[aM] =[E%) ! (13a)
5] =[E%Y([Ke] + [EYT) (13b)
V] =[] (13c)
(] =([Keo] + [EM)EY Y([Keo] + [EYT) ~ [EZ] (13d)

Y= O Ty O (142)
wherely{’]~1 is the solution of

AT AL TAL A = VO v ) (140)

Y] =[v DTy v 0y (15a)



where[V(+D] is given in Eq. (16¢) and/] is the solution of

ALY T+ VT TAL =V YT ) v O]+ (v OTT )T v+ 4 [y~ (15b)

@i+ 0] =[] (16a)
105 ™) == 0§+ [c)¥g"] (160)
G E V) (16¢)
7 =a] — [ )1vg) — Y NG + [ e ) (16d)

[Yl(i)] and[Yo(i)] are determined by applying Egs. (14) and (15) repeatedlggspecified orde¥; with
the constant matrices updated by using Eq. (16).

On the boundary of an unbounded domain, the nodal foiR{ev) } = {R(w, ¢ = 1)}- nodal displacement
{u(w)} = {u(w, & = 1)} relationship is obtained by formulating Eq. (8)ét 1 and using Eq. (10)

{R(@)} = (i0[Ca] + [Ka] — (V] + [¥g"] = (10l ?] + [Yg?]) 2=
"+ ") ) uw) @)
This equation can be reformulated by introducing auxilizagiables as
(K] + (i) [CrD{y(w) } ={F (w)} (18)

with the function{y(w)}, the external excitatiofF (w)} and the frequency-independent coefficient ma-
trices[Ky'], [Cp] defined as (The column concatenation is denoted by semijplon

W)} = {H{u@)}; {uD(E)}; {u@ (&)} {uMi=D (&)} {uMed) (£)}} (19a)
{(F(&)} = {{R(£)}; 0;0:...;0; 0} (19b)
" [Keo] —[I] O 0 0
-0 - oo 0
) 0 —[I] %2 0 0
Kel=1 . _ . " 0 (19¢)
0 0 o ] (M"Y
Lo o o o - ™)
] =diag[Cal, Y], G2, - [ Y], [y (19d)

where{u) (&)} (i=1,2, ..., M) are auxiliary variables. It can be verified by eliminatihg &uxiliary
variables that Eq. (17) is equivalent to Eq. (18) with Eq.)(1Bquation (18) is a standard equation of
motion of a linear system in structural dynamics writtenhe frequency domain. It is expressed in the
time domain as a high-order temporally local transmittingfdary condition

Ke YO} + Gy} ={F (1)} (20)

The continued-fraction solution and the resulting higtesrtransmitting boundary condition can be used
in combination with the reduced set of base functions [1BJ $ize of the system of equations is reduced
to the number of base functions retained in the reduced spar@&metric study on the order of continued
fraction is given in [6].



MODELING OF BOUNDED DOMAIN BASED ON CONTINUED-FRACTION SOLUTION FOR
DYNAMIC STIFFNESS

The continued-fraction solution can also be constructeagfoounded domain [7]. The inertial effect is
modeled by increasing the order of the continued fractiotmeut an internal mesh. The equations for
implementation are given in [14] in the same mini-symposi@nly the conclusion will be stated in this

paper.

For a bounded domain, an orddg; continued-fraction solution of the dynamic stiffness ipessed on
the boundaryd{ = 1) as

[S(@)] = [K] - w(18"] — @?(8]"] - ()] - ?S7] - ...
_w4([%|\/|cf)] S(lMcf -1 (21)

where[K] and[M] are the static stiffness and mass matrices, respectivleby flepresent the low frequency

expansion of the dynamic stiffness matrix and are routinelyd in structural dynamics{%')] and [Sﬁ')]
(i=12, ..., M) are coefficient matrices of the high-order terms, whichreéspnt the high frequency
response. These coefficient matrices can be determinedostitsting Eq. (21) into Eq. (7). The equation
of motion on the boundary of a bounded domain is expressed as

([Kn] — @’ M) {y(w)} = {F(w)} (22)
with
{y(w)} = {{u(w)}; {u' ( w)}; {u@(w)};.. {uM) (w)}} (23a)
{F(w)} ={{R(w)}; 0;0;...0} (23b)
[Ke] = diag([K], [S"], [$57], -+ (%)) (23¢)
(M} -] 0O - 0 ]
~[1 [sé] -] -~ 0
My =| O s 0 (23d)
0 6 - ngcf
where{u®)(&)} (i=1, 2, ..., M) are auxiliary variables. In the time domain, Eq. (22) istten as
[Knl{y(t) } + M {¥(t)} = {F (1)} (24)

NUMERICAL EXAMPLE

Starting from the continued-fraction solution, equati@ismotion of both bounded domains and un-
bounded domains are expressed as linear equations withefnieg- or time-independent coefficient matri-
ces. In the substructure technique of dynamic soil-strednteraction analysis, the equations of motion
of the substructures can be assembled as in the finite elenathbd. Direct coupling with standard finite
elements is also straightforward when the same shape @uscéire employed at the common boundary.
The resulting equation of motion for the global system casdieed by standard procedures in structural
dynamics. In a time-domain analysis, time stepping teascguch as Newmark method can be used.

A frame-like structure [15] shown in Figure 3(a) is analyzexdan example to illustrate the effect of dy-
namic soil-structure interaction and to demonstrate thmpktity and accuracy of the novel solution pro-
cedure of the scaled boundary finite-element equation.eEtaess condition is considered. The analyses
are performed directly in the time domain by using the Newnmaethod withy = 0.5 andf8 = 0.25. A
consistent set of units is used in the analysis. The dimaesbthe structure are given in the figure. The
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Figure 3. Frame-like structure: (a) Geometry; (b) Timedmngbf impulse loading
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Figure 4. Frame-like structure on rigid foundation: (a)l8dadoundary finite-element mesh; (b) Finite
element mesh

material properties are defined by the modulus of elastieity 10%, Poisson’s ratiov = 0.2 and the den-
sity of massp = 1. A pressure impulse with an amplitude of 10 is applied tdéffteside of the structure.
The time history of the impulse is shown in Figure 3(b).

To evaluate the effect of dynamic soil-structure inte@cn the response of this frame-like structure, both
a rigid foundation and a flexible foundation are considedadhe case of the rigid foundation, the base
of the structure is assumed to be fixed. In the scaled bourfoaig-element analysis, two subdomains
are introduced (Figure 4(a)). The scaling centers are chas¢he two inner corners C1 and C2. The
boundaries of the subdomains are discretized with 3-naaeetts. The order of the continued fraction is
chosen ad/; = 3. The time step is selected As= 0.01. A finite element analysis is performed using a
commercial software package ADINA to provide a referendet&m. The mesh of 9-node finite elements
is shown in Figure 4(b). The density of the finite element na@skhe boundary is the same as the scaled
boundary finite-element mesh. The horizontal displacesoints A and B are plotted in Figure 5. The
present scaled boundary finite-element result agrees veiywith the finite element result obtained from
ADINA.

In the case of the flexible foundation, it is assumed that thewre is resting on a half-plane with the
same material properties. The scaled boundary finite-elemesh is shown in Figure 6. A part of the
unbounded domain surrounding the structure is modeledes llounded subdomains. The scaling centers
are located at the centers of the subdomains. The order ¢tihoed fraction is chosen a4, = 3. The
remaining part of the half-plane is modeled as an unboundethah. Its scaling center is chosen at C1.

A scaled boundary finite-element analysis with the lerigth 5 (Figure 6) is performed. A reduced set
of 14 based functions are selected. The order of contingdidn is chosen a¥l; = 5. The horizontal
displacement response at Point A is plotted in Figure 7(a)prbvide a reference solution, an extended
finite element mesh is analyzed using ADINA. In the extendesml = 60 (Figure 6) is chosen. The
outer boundary is fixed. The dilatational wave generatechbyirhpulse loading will be reflected back to
the shear wall at abotit= 1.2. The horizontal displacement response at Point A is shaviigure 7(a).
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Figure 6. Frame-like structure on flexible half plane

It is observed that the two results agree well before the wasflected at the outer boundary of the ex-
tended mesh reach the structure. To further verify the teswcaled boundary finite-element analysis is
perform withL = 10 (Figure 6), which increases the distance between thetsteuand the boundary of
the unbounded domain. As shown in Figure 7(b), the resukiig glose to that foL = 5.

It is observed by comparing Figure 5(a) with Figure 7(b) thatdynamic interaction between the structure
and the foundation strongly affects the structure respoi¢leen the dynamic soil-structure interaction

is considered for this example, the maximum displacemesgiarse increases due to the flexibility of
the unbounded domain. The amplitude of the response irese&so. The radiation damping of the

unbounded domain leads to rapid decay of the vibration (€igib)). This phenomenon does not occur
when the foundation is rigid (Figure 5(a)).

CONCLUSIONS

A procedure to perform a dynamic soil-structure interac@malysis directly in the time domain is pre-
sented. A structure-soil system is divided into boundedwariztbunded subdomains. Each subdomain is
modeled by using the scaled boundary finite-element metBodew continued-fraction solution of the
scaled boundary finite-element method is applied. The emuaf motion of an unbounded domain is
expressed in a high-order static stiffness matrix and a-brgler damping matrix, and that of a bounded
domain in a high-order static stiffness matrix and a higtbleomass matrix. Newmark method is applied to
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Figure 7. Horizontal displacement at point A of frame-likeusture on flexible foundation: (&)= 5; (b)
L=10

perform the time integration. As only the boundary of thedarhains is discretized, the mesh generation
is simpler than in the finite element method. This also redibe size of the equation of motion of the
global system. A numerical example is presented to illtsttze simplicity of this direct procedure.
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